Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.768
Filtrar
1.
J Pharm Pharm Sci ; 27: 12797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558867

RESUMO

Additive manufacturing, commonly referred to as three-dimensional (3D) printing, has the potential to initiate a paradigm shift in the field of medicine and drug delivery. Ever since the advent of the first-ever United States Food and Drug Administration (US FDA)-approved 3D printed tablet, there has been an increased interest in the application of this technology in drug delivery and biomedical applications. 3D printing brings us one step closer to personalized medicine, hence rendering the "one size fits all" concept in drug dosing obsolete. In this review article, we focus on the recent developments in the field of modified drug delivery systems in which various types of additive manufacturing technologies are applied.


Assuntos
Produtos Biológicos , Tecnologia Farmacêutica , Estados Unidos , Tecnologia Farmacêutica/métodos , Impressão Tridimensional , Sistemas de Liberação de Medicamentos , Comprimidos
2.
AAPS PharmSciTech ; 25(4): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600252

RESUMO

MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.


Assuntos
Polímeros , Povidona , Tecnologia Farmacêutica/métodos , Temperatura , Excipientes , Tecnologia , Metacrilatos , Composição de Medicamentos/métodos , Solubilidade
3.
Int J Pharm ; 655: 124058, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552754

RESUMO

Polypharmacy is a common issue, especially among elderly patients resulting in administration errors and patient inconvenience. Hypertension is a prevalent health condition that frequently leads to polypharmacy, as its treatment typically requires the co-administration of more than one different Active Pharmaceutical Ingredients (API's). To address these issues, floating hollow torus-shaped dosage forms were developed, aiming at providing prolonged gastric retention and sustained drug release. The dosage forms (polypills) containing three anti-hypertensive API's (diltiazem (DIL), propranolol (PRP) and hydrochlorothiazide (HCTZ)) were created via Fused Deposition Modelling 3D printing. A multitude of the dosage forms were loaded into a capsule and the resulting formulation achieved prolonged retention times over a 12-hour period in vitro, by leveraging both the buoyancy of the dosage forms, and the "cheerios effect" that facilitates the aggregation and retention of the dosage forms via a combination of surface tension and shape of the objects. Physicochemical characterization methods and imaging techniques were employed to investigate the properties and the internal and external structure of the dosage forms. Furthermore, an ex vivo porcine stomach model revealed substantial aggregation, adhesion and retention of the 3D printed dosage forms in porcine stomach. In vitro dissolution testing demonstrated almost complete first-order release of PRP and DIL (93.52 % and 99.9 %, respectively) and partial release of HCTZ (65.22 %) in the 12 h timeframe. Finally, a convolution-based single-stage approach was employed in order to predict the pharmacokinetic (PK) parameters of the API's of the formulation and the resemblance of their PK behavior with previously reported data.


Assuntos
Anti-Hipertensivos , Diltiazem , Humanos , Idoso , Preparações de Ação Retardada/química , Comprimidos/química , Liberação Controlada de Fármacos , Hidroclorotiazida , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
4.
AAPS PharmSciTech ; 25(3): 58, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472689

RESUMO

Hydrocortisone (HC) is the optimal drug for adolescents diagnosed with congenital adrenal hyperplasia (CAH). Because traditional dosage regimens HC are inconvenient, our study used fused deposition modeling (FDM) three-dimensional (3D) printing technology to solve the problems caused by traditional preparations. First, we designed a core-shell structure tablet with an inner instant release component and an outer delayed release shell. The instant release component was Kollicoat IR: glycerol (GLY): HC = 76.5:13.5:10. Then, we used Affinisol® HPMC 15LV to realize delayed release. Furthermore, we investigated the relationship between the thickness of the delayed release shell and the delayed release time, and an equation was derived through binomial regression analysis. Based on that equation, a novel triple pulsatile tablet with an innovative structure was devised. The tablet was divided into three components, and the drug was released multiple times at different times. The dose and release rate of the tablets can be adjusted by modifying the infill rate of the printing model. The results indicated that the triple pulsatile tablet exhibited desirable release behavior in vitro. Moreover, the physicochemical properties of the drug, excipients, filaments, and tablets were characterized. All these results indicate that the FDM 3D printing method is a convenient technique for producing preparations with intricate structures.


Assuntos
Hidrocortisona , Impressão Tridimensional , Liberação Controlada de Fármacos , Comprimidos/química , Tecnologia Farmacêutica/métodos
5.
Eur J Pharm Biopharm ; 198: 114270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537908

RESUMO

Poorly soluble drugs represent a substantial portion of emerging drug candidates, posing significant challenges for pharmaceutical formulators. One promising method to enhance the drug's dissolution rate and, consequently, bioavailability involves transforming them into an amorphous state within mesoporous materials. These materials can then be seamlessly integrated into personalized drug formulations using Additive Manufacturing (AM) techniques, most commonly via Fused Deposition Modeling. Another innovative approach within the realm of AM for mesoporous material-based formulations is semi-solid extrusion (SSE). This study showcases the feasibility of a straightforward yet groundbreaking hybrid 3D printing system employing SSE to incorporate drug-loaded mesoporous magnesium carbonate (MMC) into two different drug formulations, each designed for distinct administration routes. MMC was loaded with the poorly water-soluble drug ibuprofen via a solvent evaporation method and mixed with PEG 400 as a binder and lubricant, facilitating subsequent SSE. The formulation is non-aqueous, unlike most pastes which are used for SSE, and thus is beneficial for the incorporation of poorly water-soluble drugs. The 3D printing process yielded tablets for oral administration and suppositories for rectal administration, which were then analyzed for their dissolution behavior in biorelevant media. These investigations revealed enhancements in the dissolution kinetics of the amorphous drug-loaded MMC formulations. Furthermore, an impressive drug loading of 15.3 % w/w of the total formulation was achieved, marking the highest reported loading for SSE formulations incorporating mesoporous materials to stabilize drugs in their amorphous state by a wide margin. This simple formulation containing PEG 400 also showed advantages over other aqueous formulations for SSE in that the formulations did not exhibit weight loss or changes in size or form during the curing process post-printing. These results underscore the substantial potential of this innovative hybrid 3D printing system for the development of drug dosage forms, particularly for improving the release profile of poorly water-soluble drugs.


Assuntos
Polietilenoglicóis , Impressão Tridimensional , Tecnologia Farmacêutica , Preparações Farmacêuticas , Solubilidade , Liberação Controlada de Fármacos , Composição de Medicamentos , Tecnologia Farmacêutica/métodos , Comprimidos
6.
J Chromatogr A ; 1718: 464721, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341902

RESUMO

Raman spectroscopy is considered a Process Analytical Technology (PAT) tool in biopharmaceutical downstream processes. In the past decade, researchers have shown Raman spectroscopy's feasibility in determining Critical Quality Attributes (CQAs) in bioprocessing. This study verifies the feasibility of implementing a Raman-based PAT tool in Protein A chromatography as a CQA monitoring technique, for the purpose of accelerating process development and achieving real-time release in manufacturing. A system connecting Raman to a Tecan liquid handling station enables high-throughput model calibration. One calibration experiment collects Raman spectra of 183 samples with 8 CQAs within 25 h. After applying Butterworth high-pass filters and k-nearest neighbor (KNN) regression for model training, the model showed high predictive accuracy for fragments (Q2 = 0.965) and strong predictability for target protein concentration, aggregates, as well as charge variants (Q2≥ 0.922). The model's robustness was confirmed by varying the elution pH, load density, and residence time using 19 external validation preparative Protein A chromatography runs. The model can deliver elution profiles of multiple CQAs within a set point ± 0.3 pH range. The CQA readouts were presented as continuous chromatograms with a resolution of every 28 s for enhanced process understanding. In external validation datasets, the model maintained strong predictability especially for target protein concentration (Q2 = 0.956) and basic charge variants (Q2 = 0.943), except for overpredicted HCP (Q2 = 0.539). This study demonstrates a rapid, effective method for implementing Raman spectroscopy for in-line CQA monitoring in process development and biomanufacturing, eliminating the need for labor-intensive sample pooling and handling.


Assuntos
Cromatografia , Análise Espectral Raman , Calibragem , Preparações Farmacêuticas , Tecnologia Farmacêutica/métodos
7.
AAPS PharmSciTech ; 25(2): 37, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355916

RESUMO

Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Composição de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Tecnologia de Extrusão por Fusão a Quente , Indústria Farmacêutica/métodos , Temperatura Alta
8.
Int J Pharm ; 653: 123902, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38360287

RESUMO

Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.


Assuntos
Medicina de Precisão , Impressão Tridimensional , Medicina de Precisão/métodos , Indústrias , Controle de Qualidade , Preparações Farmacêuticas , Tecnologia Farmacêutica/métodos , Formas de Dosagem
9.
Int J Pharm ; 655: 123941, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38403087

RESUMO

Developing safe and effective formulations for the geriatric and pediatric population is a challenging task due to issues of swallowability and palatability. The lack of standardized procedures for pediatric formulations further complicates the process. Manipulating adult formulations for children can lead to suboptimal efficacy and safety concerns. To overcome these challenges, minitablets or spinklets are preferred for the geriatric and pediatric population due to their smaller size and flexible dose adjustment. The aim of this study is the development of a 3D printed spinklets formulation of celecoxib, a nonsteroidal anti-inflammatory drug, using hot melt extrusion to address the limitations of traditional manufacturing methods. Three different formulations of celecoxib were prepared using Poly-2-ethyl-tetra-oxazoline (Aquazol) with and without surfactant. Subsequently, the mechanical properties and solubility of the drug-loaded filaments were evaluated. Solid state characterization confirmed the drug conversion into an amorphous form during the extrusion process, Computer-aided design software facilitate sprinklets design for fused deposition modeling and scanning electron microscopy assess the surface morphology. Sophorolipids plasticize better than TPGS, resulting in lowering processing temperatures during melt extrusion. In vitro drug release showed successful enhancements in the dissolution of oral medications for pediatric patients, considering their distinctive physiological characteristics. Overall, this study demonstrates the successful development of PEtOx-based 3D printed celecoxib sprinklets by coupling hot-melt extrusion and 3D printing technology. Future exploration holds the potential to revolutionize pharmaceutical production and advance personalized medication formulations.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Humanos , Criança , Idoso , Celecoxib , Liberação Controlada de Fármacos , Solubilidade , Temperatura , Tecnologia Farmacêutica/métodos , Comprimidos
10.
Int J Pharm ; 653: 123862, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307399

RESUMO

Pharmaceutical three-dimensional printing (3DP) is now in its golden age. Recent years have seen a dramatic increase in the research in 3D printed pharmaceuticals due to their potential to deliver highly personalised medicines, thus revolutionising the way medicines are designed, manufactured, and dispensed. A particularly attractive 3DP technology used to manufacture medicines is stereolithography (SLA), which features key advantages in terms of printing resolution and compatibility with thermolabile drugs. Nevertheless, the enthusiasm for pharmaceutical SLA has not been followed by the introduction of novel excipients specifically designed for the fabrication of medicines; hence, the choice of biocompatible polymers and photoinitiators available is limited. This work provides an insight on how to maximise the usefulness of the limited materials available by evaluating how different formulation factors affect printability outcomes of SLA 3D printed medicines. 156 photopolymer formulations were systematically screened to evaluate the influence of factors including photoinitiator amount, photopolymer molecular size, and type and amount of liquid filler on the printability outcomes. Collectively, these factors were found highly influential in modulating the print quality of the final dosage forms. Findings provide enhanced understanding of formulation parameters informing the future of SLA 3D printed medicines and the personalised medicines revolution.


Assuntos
Impressão Tridimensional , Estereolitografia , Polímeros , Excipientes , Tecnologia Farmacêutica/métodos , Formas de Dosagem
11.
Int J Pharm ; 653: 123859, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38307401

RESUMO

This study explores the innovative production of personalized bilayer tablets, integrating two advanced manufacturing techniques: Droplet Deposition Modeling (DDM) and Injection Molding (IM). Unlike traditional methods limited to customizing dense bilayer medicines, our approach uses Additive Manufacturing (AM) to effectively adjust drug release profiles. Focusing on Caffeine and Paracetamol, we found successful processing for both DDM and IM using Caffeine formulation. The high viscosity of Paracetamol formulation posed challenges during DDM processing. Integrating Paracetamol formulation for the over-molding process proved effective, demonstrating IM's versatility in handling complex formulations. Varying infill percentages in DDM tablets led to distinct porosities affecting diverse drug release profiles in DDM-fabricated tablets. In contrast, tablets with high-density structures formed through the over-molding process displayed slower and more uniform release patterns. Combining DDM and IM techniques allows for overcoming the inherent limitations of each technique independently, enabling the production of bilayer tablets with customizable drug release profiles. The study's results offer promising insights into the future of personalized medicine, suggesting new pathways for the development of customized oral dosage forms.


Assuntos
Acetaminofen , Cafeína , Liberação Controlada de Fármacos , Cafeína/química , Comprimidos/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
12.
Int J Pharm ; 653: 123867, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310991

RESUMO

In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Humanos , Criança , Tecnologia Farmacêutica/métodos , Composição de Medicamentos , Preparações Farmacêuticas , Medicina de Precisão , Sistemas de Liberação de Medicamentos
13.
Int J Pharm ; 653: 123905, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38355075

RESUMO

The study aims to fabricate extended release (ER) tablets using a dual-nozzle fused deposition modeling (FDM) three-dimensional (3D) printing technology based on hot melt extrusion (HME), using caffeine as the model compound. Three different ER tablets were developed, which obtained "delayed-release", "rapid-sustained release", and "release-lag-release" properties. Each type of tablet was printed with two different formulations. A novel printing method was employed in this study, which is to push the HME filament from behind with polylactic acid (PLA) to prevent sample damage by gears during the printing process. Powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC) results showed that caffeine was predominately amorphous in the final tablets. The dissolution of 3D printed tablets was assessed using a USP-II dissolution apparatus. ER tablets containing PVA dissolved faster than those developed with Kollicoat IR. Overall, this study revealed that ER tablets were successfully manufactured through HME paired with dual-nozzle FDM 3D printing and demonstrated the power of 3D printing in developing multi-layer tablets with complex structures.


Assuntos
Cafeína , Tecnologia de Extrusão por Fusão a Quente , Liberação Controlada de Fármacos , Comprimidos/química , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
14.
Int J Pharm ; 653: 123891, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38346603

RESUMO

One of the most common standardised testing of tablet strength in the pharmaceutical industry is the tablet breaking force, which records data related to diametrical compression. This method does not account for a rapid transfer of energy such as free-falling tablets hitting a solid surface, which occurs throughout manufacture, packaging and shipping. Accordingly, the test shows poor correlation with tablet defect rate. Impact fracture force was identified as a test to measure the force absorbed by the material before fracturing when applying impact energy (dynamic stress). The testing methodology for impact fracture force was modified and developed to characterise pharmaceutical tablets. A wide range of tablet formulations with different compositions, sizes, shapes and strengths were evaluated. The results showed that the measured impact fracture force had superior correlation with tablet defect rate in comparison to the standard pharmaceutical tests for breaking and friability with good repeatability. This is the first instrumented impact fracture force tester for pharmaceutical tablets that enables quality by design robust products to withstand and survive mechanical stresses during the manufacturing process. This method has the potential to save extra resource and cost required to solve issues around tablet defects including manufacturing deviations, tablet waste, extra appearance testing, visual inspection and tablet sorting.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Química Farmacêutica/métodos , Composição de Medicamentos , Estresse Mecânico , Pressão , Comprimidos , Resistência à Tração , Tecnologia Farmacêutica/métodos
15.
Sci Rep ; 14(1): 2927, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316908

RESUMO

Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 µg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.


Assuntos
Piperidonas , Pirimidinas , Controle de Qualidade , Rosuvastatina Cálcica , Espectrometria de Fluorescência , Tecnologia Farmacêutica , Laboratórios , Combinação de Medicamentos , Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/métodos , Indústria Farmacêutica/normas , Composição de Medicamentos/instrumentação , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Tecnologia Farmacêutica/instrumentação , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas , Cor , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/normas , Formas de Dosagem
16.
Int J Pharm ; 652: 123816, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38246479

RESUMO

A better understanding of crystallization kinetics and the effect on drug product quality characteristics is needed to exploit the use of semi-crystalline polymers in pharmaceutical fused filament fabrication. Filaments were prepared from polycaprolactone or polyethylene oxide loaded with a crystallization inhibitor or inducer, which was either 10% (w/w) ibuprofen or theophylline. A design-of-experiments approach was conducted to investigate the effect of nozzle temperature, bed temperature and print speed on the printed tablets' microstructure and dissolution kinetics. Helium pycnometry derived porosity proved an ideal technique to capture significant distortions in the tablets' microstructure. On the other hand, terahertz time domain spectroscopy (THz-TDS) analysis proved valuable to investigate additional enclosed pores of the tablets' microstructure. The surface roughness was analyzed using optical coherence tomography, showing the importance of extensional viscosity for printed drug products. Drug release occurred via erosion for tablets consisting of polyethylene oxide, which partly reduced the effect of the inner microstructure on the drug release kinetics. An initial burst release effect was noted for polycaprolactone tablets, after which drug release continued via diffusion. Both the pore and crystalline microstructure were deemed essential to steer drug release. In conclusion, this research provided guidelines for material and process choice when a specific microstructure has to be constructed from semi-crystalline materials. In addition, non-destructive tests for the characterization of printed products were evaluated.


Assuntos
Polietilenoglicóis , Polímeros , Porosidade , Liberação Controlada de Fármacos , Comprimidos/química , Polímeros/química , Tecnologia Farmacêutica/métodos , Impressão Tridimensional , Solubilidade
17.
Int J Pharm ; 652: 123849, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266938

RESUMO

This feasibility study evaluates a cleaning process designed to avoid the use of detergents and reduce operator exposure to the active pharmaceutical ingredient (API). The continuous manufacturing equipment was cleaned using excipients to displace ibuprofen residues from the system. The cleaning process was performed using 3.0 kg of Prosolv® and 3.0 kg of Tablettose® 70. The impact of different volumetric feed rates of the cleaning excipient was assessed. The displacement of API and blend residues was evaluated with in-line near infrared (NIR) spectroscopy. Principal component analysis (PCA) was performed to evaluate the cleaning progress as the Prosolv® flowed through the feeder, mixer and stream sampler. In-place Raman spectra were acquired from the material sticking to detect the ibuprofen residues. The study showed that Prosolv® and Tablettose® can remove ibuprofen residues effectively from the hopper, feeder screw, mixer paddles, shaft and stream sampler. The Process Analytical Technology (PAT) system can be utilized to detect API displacement during the cleaning process. However, dismantling and manual cleaning was required to remove material sticking at the surfaces adjacent to the rotating feeder screws and mixer paddles.


Assuntos
Química Farmacêutica , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Química Farmacêutica/métodos , Excipientes/química , Ibuprofeno/química , Pós/química , Comprimidos , Composição de Medicamentos/métodos
18.
Int J Pharm ; 651: 123777, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181992

RESUMO

Chewable gummies are an attractive dosage form for all age groups because of their appearance and texture. Although, this dosage form has been highly preferred administering nutraceuticals, its application in the pharmaceutical sector is worth exploring. In this study, simethicone (SMT), an OTC drug prescribed for anti-flatulence was incorporated in pectin- based, low-calorie, 3D printed gummies. Semi-solid extrusion (SSE)-based 3D printing was used to dispense personalized dose of SMT i.e 40 mg for children and 125 mg for adults. Formulation optimization was carried out based on the texture profile of the gummies, using a texture analyzer. The inks were thoroughly characterized for their rheological behavior since it is a critical attribute for SSE-based 3D printing. Printing parameters like the printing speed, layer height and the type of the nozzle were optimized based on the printing accuracy achieved. The printed gummies were further evaluated for their disintegration time, drug content, weight variation, water activity and total microbial count. SSE-based 3D printing was found to be an effective tool to print pectin-based shear thinning gels for accurate drug dispensing. The texture profile of the printed gummies was comparable to the gummies prepared by conventional method as well as the marketed samples.


Assuntos
Simeticone , Veganos , Criança , Humanos , Estudos de Viabilidade , Pectinas , Impressão Tridimensional , Liberação Controlada de Fármacos , Tecnologia Farmacêutica/métodos
19.
Eur J Pharm Sci ; 192: 106619, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866675

RESUMO

This study investigates the influence of drug load and polymer molecular weight on the structure of tablets three-dimensionally (3D) printed from the binary mixture of prednisolone and hydroxypropyl methylcellulose (HPMC). Three different HPMC grades, (AFFINISOLTM HPMC HME 15LV, 90 Da (HPMC 15LV); 100LV, 180 Da (HPMC 100LV); 4M, 500 Da (HPMC 4M)), which are suitable for hot-melt extrusion (HME), were used in this study. HME was used to fabricate feedstock material, i.e., filaments, at the lowest possible extrusion temperature. Filaments of the three HPMC grades were prepared to contain 2.5, 5, 10 and 20 % (w/w) prednisolone. The thermal degradation of the filaments was studied with thermogravimetric analysis, while solid-state properties of the drug-loaded filaments were assessed with the use of X-ray powder diffraction. Prednisolone in the freshly extruded filaments was determined to be amorphous for drug loads up to 10%. It remained physically stable for at least 6 months of storage, except for the filament containing 10% drug with HPMC 15LV, where recrystallization of prednisolone was detected. Fused deposition modeling was utilized to print honeycomb-shaped tablets from the HME filaments of HPMC 15LV and 100LV. The structural characteristics of the tablets were evaluated using X-ray microcomputed tomography, specifically porosity and size of structural elements were investigated. The tablets printed from HPMC 15LV possessed in general lower total porosity and pores of smaller size than tablets printed from the HPMC 100LV. The studied drug loads were shown to have minor effect on the total porosity of the tablets, though the lower the drug load was, the higher the variance of porosity along the height of the tablet was observed. It was found that tablets printed with HPMC 15LV showed higher structural similarity with the virtually designed model than tablets printed from HPMC 100LV. These findings highlight the relevance of the drug load and polymer molecular weight on the microstructure and structural properties of 3D printed tablets.


Assuntos
Polímeros , Prednisolona , Polímeros/química , Peso Molecular , Microtomografia por Raio-X , Comprimidos/química , Liberação Controlada de Fármacos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos
20.
Int J Pharm ; 649: 123639, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042381

RESUMO

Established medicines are often not tailored to the needs of the pediatric population, causing difficulties with administration or dosing. Three-dimensional (3D) printing technology allows novel approaches for compounding of personalized medicine, as is exemplified in this study for the automated compounding of rectal preparations for children. We investigated the material requirements to print prednisolone phosphate-loaded suppositories with tunable dose and rapid drug release for the treatment of inflammatory bowel diseases. Three formulations containing 4 % w/w prednisolone sodium phosphate (PSP) and different amounts of hydroxypropyl cellulose (HPC) and mannitol as excipients were printed as suppositories with a fused deposition modeling (FDM) 3D-printer. Dissolution studies showed that the PSP release rate was increased when higher weight fractions of mannitol were added as a pore former, with 90 % drug release within 30 min for mannitol 48 % w/w. We further printed suppositories with 48 % mannitol with different infill densities and dimensions to tune the dose. Our findings demonstrated that 3D-printed suppositories with PSP doses ranging from 6 to 30 mg could be compounded without notably affecting the dissolution kinetics, ensuring equivalent therapeutic efficacies for different doses.


Assuntos
Doenças Inflamatórias Intestinais , Tecnologia Farmacêutica , Criança , Humanos , Tecnologia Farmacêutica/métodos , Comprimidos , Supositórios , Liberação Controlada de Fármacos , Impressão Tridimensional , Manitol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...